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Updates since last July

* Added one new member to the group: Caryn Palatchi (joint UVa — CFNS
postdoc

* IP location change results in some significant changes in the analysis of the
Compton polarimeter

* |dentified and ordered components for the low power system needed for
year 1
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e-Polarimetry at the EIC
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e-Polarimetry requirements for the EIC
Fast Precise

* At 18 GeV bunches will be replaced * Distance between buckets is ~10ns
every 2 min (@5,10 GeV)
* bunch by bunch measurement cannot be
A full polarimetry measurement done with a CW laser without very fast
needs to happen in a shorter time detectors
span * For systematic studies we would like to
have the ability to either measure a
* The amount of electrons per bunch single bunch (~78kHz) or have
is fairly small ~24 nC interactions with all 1160 (260)
* will need bright laser beam to obtain bunches at 10 and 5 GeV (18GeV)
needed luminosity * Backgrounds need to be under control
« A fast polarimeter will allow for e Laser polarization needs to be known

' to a high d
faster machine setup O a high aegree

Q\\\‘ Stony Brook University



Compton scattering basics
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* Polarized photon-electron scattering
* Potential to measure redundantly with scattered photon and electron
* Fully QED calculable analyzing power

* Interactions happen with a small fraction of the beam particles leaving it
undisturbed
* Monitoring can be performed in real time during actual data taking
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Compton scattering basics
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* For both the longitudinal and transverse
polarimetry measurements at the energies of
Interest for the EIC the analyzing powers are
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Transverse polarization T T T | — s
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* The scattered electron reaches the largest
analyzing power at large scattering angles

* The higher the energy the tighter the
collimation of the scattered photons will be

03 ’ * This leads to significant constraints on detector
N segmentation
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IP6 polarization is more complicated

. o . larization at Compton IP
e The different beam energies will provide Soi Rl AR

Beam energy [GeV] Longitudinal [%] Vertical [%]

dlffer.ent.amounts of longitudinal c 97 6 1.6
polarizations 10 90.7 42.2
* This brings the analyzing power as a function 18 70.8 70.6

of backscattered photon energy for all three
configurations in a similar range
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IP6 polarization is more complicated

* The up down asymmetry typically seen in polarization at Compton IP
transverse polarimeters is significantly more | Beamenergy [GeV] Longitudinal [%] Vertical [%]
complicated for the IP6 configurations > 97.6 21.6

10 90.7 42.2
A detector system that can measure both " = 06

longitudinal and transverse components will
give us the best chance to obtain fast and
precise polarization determinations
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Synchrotron backgrounds (eRDlS) .

* M. Sullivan found that (in the JLEIC
setup) the electron detector would get
a significant amount of background at 7
and 10 GeV (with the expectation that
it would be worse are higher energies)

* The EIC setup will suffer from a similar
issue where 1-bounce photons would
make it to the electron detector
potentially being a significant source of
background

e Of particular interest is the 18 GeV
setup that will produce significantly
higher energy photons
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Synchrotron backgrounds

* We have started with the set up initially created by Zhengqgiao Zhang (BNL) and added
a rudimentary stainless steel pipe and box upstream of the electron detector location

* We have cross checked that the synchrotron spectrum provided by G4 is consistent
with analytical calculations for a simpler set up

* The initial simulation doesn’t show a significant amount of 1-bounce photons, but
further cross checks will be made (including comparing our results to engineering
calculations of power depositions on the beam pipe)

* The electron detector will need to be designed to be able to handle this background
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Current design of EIC laser system
—pmy
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* The initial laser system design uses most of the design features highlighted in the
previous Compton polarimeter implementations

* As was before we need the laser system to be away from potential fatal radiation fields inside
the tunnel (we plan to evaluate the use of high power laser fiber)

* The vacuum resident insertable mirror will be needed in order to be able to
monitor the DOCP at the interaction point
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Project and Deliverables

* Detail design of  High power fiber . IChECk 1?0% DOCP
L aser polarization
laser system amplifier through vacuum
* Seed and preamp * Fiber delivery windows
construction * Frequency doubler * Remote control
* Low power . Desi stages
characterization eslgh vacuum » Picomotor controller

system _
e Potential test at JLab

e Publish results
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Components identified

 The most important components for the
variable pulse frequency are the seed laser and
the pulse generator

* We have decided to use Cybel LLC for both of
these components as they have been used in
similar systems at LERF (JLab)

* The average laser output power
(pulsed/100MHz): 0.1 mW

° The Eulse generator can gIVE us tunable pulse .r\ll’(:]Allncnsuuls in millimeters
width and a wide frequency range e

* We expect delivery by early June |_ - m

* This should allow us to complete the low power [ ! TS o
proof of principle by the end of the funding cycle ol | ¥oI i Y

e Additional “off-the-self” éThor Labs or Newport)
components were identified: controllers for the
seed (ITC4002QCL/LDT-5910C-120V & LDX-
3412-120V), pre-amplifier (YDFA100P), various
fiber optics (I0-G-1064, PM100D, S121C)

Cybel-LLC

QLD106G-6410 by Cybel-LLC
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Summary and next steps

e After the

ow power variable

frequency characterization the crucial

step of ta
power wi

King the system to high
| need to be done in the

second year

* The IP6 locations provides unique
challenges, especially taking into
account the lofty goal of 1% precision

* In parallel with the determination of
the detector requirements and
analysis technique we will push ahead
with the evaluation of backgrounds for
both the electron and photon

detectors
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Backup

‘\\\‘ Stony Brook University

Ciprian Gal

16



